EHR Surveillance for Seasonal and Pandemic Influenza in Primary Care Settings

Jonathan L. Temte, MD/PhD
Chuck Illingworth

University of Wisconsin School of Medicine and Public Health
Department of Family Medicine
Clinical Data Warehouse Project
Acute Respiratory Infections are Common in Primary Care Practice

2007 / 2008

8.1%
Influenza hides within the constellation of Acute Respiratory Infections (ARI)

- CDC Definition of ARI
 - Two or more of the following:
 - Fever
 - Cough
 - Sore Throat
 - Rhinorrhea
 - Nasal Congestion

- CDC definition of Influenza-Like Illness (ILI)
 - Age ≥ 2 years: fever and (cough or sore throat)
 - Age < 2 years: fever and any respiratory symptom
Influenza Surveillance

- P+I mortality Index
- Virological Surveillance
- Assessment of State and Territorial Epidemiologists
- ILI–Net (Sentinel Surveillance)
 - Primary care sentinels through the US
 - Weekly reporting of ILI cases in 4 age groups
 - Weekly reporting of all patient seen
Objective:

- Determine whether a simple EMR algorithm can reliably identify influenza outbreaks in a primary care population

Background

- Experience in monitoring ARI from the UW-DFM Clinical Data Warehouse
- Combining EMR data with ILI-Net data from Wisconsin provided evidence that ILI/ARI may be a good signal
Combining data produced some interesting and strong signals...

2007 / 2008
Methods

Data Period
- July 1, 2006 through April 10, 2010
 - 3 seasonal influenza epidemics
 - 2 waves of pandemic influenza

Electronic Data
- UW Dept. of Family Medicine Clinical Data Warehouse
- Extensive universe of primary care data
 - Approximately 176,624 unique patients
 - 3.2% of Wisconsin’s total population
 - Demographic information
 - ICD-9 codes
 - CPT codes
 - EPIC EMR Data
- Approximately 16,500 patient encounters per week
Methods

- Assess the percentage of visits per week
 - “all-cause” Acute Respiratory Infections (ARI)
 - ICD-9: 381-382.9: “nonsuppurative otitis media and eustachian tube disorders” and “suppurative and unspecified otitis media”
 - ICD-9: 460-466.99: “acute respiratory infections”
 - ICD-9: 480-488.1: “pneumonia”, “influenza”, and “H1N1”
 - Influenza-like Illness (ILI)
 - ARI diagnosis code and measured temperature \(\geq 100^\circ \text{F} \)

- Calculate the ratio ILI to ARI (\%)
Methods

- Compare ILI/ARI signal to an external measure of influenza prevalence
 - Wisconsin State Laboratory of Hygiene
 - Public Health Surveillance of influenza
 - Culture
 - Rapid testing network
 - PCR
- Calculate sensitivity, specificity, PPV and NPV
 - Peak influenza weeks
 - Outbreak weeks
WSLH data

- Weekly data
 - Culture
 - Rapid testing
 - PCR

- Available at:
 - www.slh.wisc.edu
Influenza Activity in Wisconsin

<table>
<thead>
<tr>
<th>Outbreak</th>
<th>Start</th>
<th>End</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal #1</td>
<td>2/04/2007</td>
<td>3/24/2007</td>
<td>7</td>
</tr>
<tr>
<td>Seasonal #2</td>
<td>1/27/2008</td>
<td>3/29/2008</td>
<td>9</td>
</tr>
<tr>
<td>Seasonal #3</td>
<td>2/08/2009</td>
<td>4/04/2009</td>
<td>8</td>
</tr>
</tbody>
</table>
ILI / ARI ratio
Proposed 5% ILI/ARI ratio

- Based on occurrence of five definite peaks
- Threshold level
- Simplicity
ILI / ARI ratio

- Ratio
- 3pt Moving Average
- Outbreaks

Performance

<table>
<thead>
<tr>
<th></th>
<th>Outbreak (+)</th>
<th>Outbreak (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 5% \text{ ILI/ARI})</td>
<td>31 weeks</td>
<td>0 weeks</td>
</tr>
<tr>
<td>< 5% ILI/ARI</td>
<td>3 weeks</td>
<td>162 weeks</td>
</tr>
<tr>
<td>(using 3-pt MA)</td>
<td>34 weeks</td>
<td>162 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>196 weeks</td>
</tr>
</tbody>
</table>

- **Sensitivity**
 - \(\frac{31}{34} = 91.2\% \)

- **Specificity**
 - \(\frac{162}{162} = 100\% \)

- **PPV**
 - \(\frac{31}{31} = 100\% \)

- **NPV**
 - \(\frac{162}{165} = 98.2\% \)
An increase in the ILI/ARI ratio of 2% over 3 weeks also predicts outbreaks
Validity of Results

- **Strengths**
 - Primary care based data
 - Large population size
 - Wide inclusion of “umbrella” diagnoses
 - Simplicity

- **Limitations**
 - Lack of “a priori” hypothesis
 - No clear definition of influenza outbreak
 - Lack of definite “gold standard”
 - Nuances of practice, EMR and practice style
Conclusions

- Influenza outbreaks can be reliably detected by EMR data
- A very simple algorithm performs well
 - unselected ARI cases compared to cases filtered using a 100°F criteria
 - Use of a 3-point moving average would delay outbreak detection by one week
 - A marked rise in ILI/ARI ratio may provide additional support for outbreak occurrence
- Additional evaluations are warranted