EPIDEMILOGIC SURVEY OF LEGIONELLA URINE ANTIGEN TESTS WITHIN A LARGE WISCONSIN INTEGRATED HEALTH CARE SYSTEM

Caroline P. Toberna1,2,4; Hannah M. William, BS1,2,3; Dennis J. Baumgardner, MD1,4; Jessica J. F. Kram, MPH1,4; Kayla Heslin, MPH1,3

1Aurora UW Medical Group and Center for Urban Population Health, Milwaukee, WI; 2University of Wisconsin-Milwaukee, Milwaukee, WI; 3Aurora Research Institute, Milwaukee, WI; 4University of Wisconsin-Madison, Department of Family Medicine and Community Health, Madison, WI;

BACKGROUND

- Legionella pneumophila is an aerobic, pathogenic, gram-negative bacterium.
- Human infection presents as potentially life-threatening pneumonia otherwise known as Legionnaires’ disease.
- Legionella organisms exist in biofilms and survive and multiply within free-living amoebas.
- Outbreaks have been associated with contaminated cooling towers and other fresh water sources.

OBJECTIVE

Our study aimed to identify unrecognized outbreaks and geodemographic associations of Legionella, given limited literature regarding the epidemiology of infections in Wisconsin and recent outbreak reports.

METHODS

- Retrospective chart review on:
 - All in-patients and out-patients who underwent LgAg urine antigen testing
 - Within a single Eastern Wisconsin health system
 - Between January 2013 and December 2017
- Random sample inclusive of all positive tests was reviewed.
 - If a patient was ever identified as positive, only the encounter in which they had their first positive test was included in the analyses.
 - For all other patients, only their first negative test was included.
 - Ultimately, the above rules let us get down to the individual patient level.
- Demographics – Statistical Methods:
 - Chi-squared, 2-sample t-tests, and stepwise regression for univariable analysis as appropriate
 - Binary logistic regression for multivariable analysis
- Geographic Patterns -- Mapping Methods:
 - SAS, Tableau, and other GIS mapping software
 - Positive test results with ZIP codes within Wisconsin were mapped to locate hotspots
 - Specifically looked at ZIP codes within Milwaukee County
 - Negative cases were used to investigate significant geodemographic differences in patients testing positive versus negative
 - Additionally, geographic information for positive tests were mapped to locate hotspots.

RESULTS

- Of all LgAg results in the original data set (N=21,599) of the affiliated laboratory, 146 (0.68%) were positive.
- After chart review of the random sample inclusive of all positives, 138 positive cases remained in the final data set, 135 with ZIPs in WI. Differences in demographics are described in (Table 1).

<table>
<thead>
<tr>
<th>Predictor</th>
<th>All Patients Tested</th>
<th>Negative LgAg (N=21,599)</th>
<th>Positive LgAg (N=135)</th>
<th>Coverage in LgAg Positive LgAg Tests by ZIP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIP codes</td>
<td>All Patients Tested</td>
<td>Negative LgAg (N=21,599)</td>
<td>Positive LgAg (N=135)</td>
<td>Coverage in LgAg Positive LgAg Tests by ZIP Code</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Of the original data set’s LgAg results, the prevalence of positive tests was <1.0%. Patients tested in warmer months, who were relatively younger, male, and non-White were more likely to test positive. This methodology, if done real-time, may complement public health detection of Legionella outbreaks. Further study on built environments near clustered cases may reveal additional sources of infection.

ACKNOWLEDGEMENTS

We would like to thank Andrew Marek for his contribution to theGIS mapping associated with this project. We would also like to thank Julie Prabucki for initial laboratory data acquisition.

REFERENCES